Tuesday, December 16, 2014

Teaching Basic Circuitry the Holiday Way!

If you've seen my last post here, you've probably seen this little bauble.



This is the final product created by the no-solder kit I'm selling to fund my Gold Award project. The idea is that the kit is easy to assemble as a kit to teach younger kids about Parallel and Series Circuits, while still leaving something cool for them to take home. Each bauble costs less than a dollar to make*, and all the materials can be bought with a trip to a craft store and an electronics store, so I'd say it's pretty successful!

*If you buy batteries online, as most coin batteries I've seen are insanely expensive at grocery stores. I bought 100 for $17 from this website.

Here's what you'll need: 

1 Miniature Glass Ornament
Some silver ribbon (I used Easter Basket filling)
2 Pieces of Wire
1 Lithium Coin Battery

1 LED

A hot glue gun
A pencil
Some tape (electrical tape works best)
Scissors

How to make your ornament:
Carefully pull the silver top off the glass ornament, then pull the pin out.



Use a pencil to push the silver ribbon into the ornament.
Put a piece of tape on the inside of the silver ornament top so that it covers the two holes. Poke one of the leads of the LED through the tape and through the hole so that the bulb is UNDER the ornament top.



Use the hot glue gun to secure the LED to underside of the lid so that the bulb sticks out by about half an inch. 



Then glue the lid back to the top of the ornament so that the LED is hidden by the silver ribbons



Loop one of the metal ends of the black wire around the shorter lead on the LED, and secure it with hot glue or tape.  Make sure the wire is directly touching the lead! Then, do the same with the red wire on the longer lead.

If you're interested in doing the experiments (which require 2 or more baubles), here are the instructions I'm giving out with the kit below:

PARALLEL AND SERIES CIRCUIT EXPERIMENT


Series circuits are created by wiring all the components of a circuit in a line. The electricity moves straight from one component to the next. They’re useful when you want a circuit to shut down completely if it’s damaged. 

Just connect the wires red to black for series, and make sure the red wire goes to the positive side of  the battery, and the black to the negative. 

What happens when you add more ornaments to the chain? Try touching a paperclip to both leads of an LED in the circuit. What happens? Why is this? 


Parallel Circuits are created when each component gets its energy directly from the same energy source. They’re useful when you want each component to work independently of each other, or if you don’t want damage to one component to affect the others. 


For a Parallel circuit, the black or red wires for each ornament connect with the black or red wire leads of the next LED. The last black wire in the chain goes to the negative side of the battery, the last red wire to the positive. 

What happens when you add more ornaments to this chain? Try touching a paperclip to both leads of an LED in the circuit. What happens? Why is this? 







Finally, to finalize the ornament, tape the other end of the red wire to the positive side of the battery, and the black wire to the negative. The LED should light up. If it doesn’t try swapping the wires or moving the LED’s leads. If they’re in contact with the metal of the ornament top, the LED won’t light.

I hope this lifts your holiday spirits! It's fairly durable (I was able to wear one on a necklace all day at school with minimal problems.) and it looks good. Try it as an ornament, a necklace, and augmentation to an ugly sweater, or just a shiny reminder to say "Happy Holidays!" 

And if you happen to make one, please, send me a picture at rach.s.thompson@gmail.com. I'd love to see it!

Friday, December 12, 2014

Makerspace, Part 2: The Plan.

Last week, I finally got to have my first meeting with the middle school Technology club I'm working with to create the Makerspace. We talked about what a Makerspace was, how we were planning to use it in the school, and the various bits and pieces of old projects that I brought to show what kinds of things could be made in a Makerspace. Basically, it was a condensed version of this post, with a few pictures from Big Hero 6 and Iron Man 3 as reference points.

Good movie...  but it was no Wreck-it-Ralph. 

At the end of the meeting, I had ever student write down on their slip of paper the top ten things they wanted to be able to make/learn in the technology club. Over the weekend, I looked through all the answers I got, and came up with the five main units that would be the most useful and interesting to kick off the Makerspace and the Tech Club. The Technology club has two types of meetings - "Class" meetings, which teach skills like the one's seen below, and "Business" meetings, where we'd focus more on the Makerspace itself, and where members would have time to share the projects they've been working on (THAT is for a different post). But the introductory skills are important for the students with little or no experience. So here's what I've put together: 



1. Programming
 This is the obvious one, but I've put it as the first unit because it's a vital skill so many of the other projects the students were interested in, and because it doesn't require expensive materials. I'm working on lesson plans for a programming intro class for Scratch, which will hopefully give enough of an introduction that the students will feel comfortable working on Codecademy tutorials or learning from other online resources



2. Robotics
These kids love robotics almost as much as I do. The issue here is limited time and materials. I'm planning on doing two classes with Mindstorms Ev3 - one for building, one for programming. I'd also like to incorporate robotics into an Arduino introduction later on - I have an RC car that I robotized with an Arduino that would make a good example.



3. Circuitry
While I'd actually prefer this unit before robotics, the littleBits are one of the more expensive items in the budget, and, while I have an Ev3 kit at home that I could bring as an example, the same isn't true here.



4. Computers
This is kind of a catch-all unit. Here I definitely want to have a class on the Raspberry Pi, but I also want to bring in some of the other Technology Club Alumni to teach classes on things I'm not as familiar with, like App programming and Web Design. (It's interesting to see how our individual interests were foreshadowed through Tech Club and the technology class. The ones who spent all their time on the iPod touches now program them, the ones who spent all their time tweaking Powerpoints and Tshirt designs have gone into 3D animation or computer graphic design. And yours truly MAY have turned in a final paper analyzing potential uses for robots that could create their own languages after researching this. I really should post it here if I can find it.)




5. 3D Printing
I have never had the opportunity to use a 3D printer, and I could not be more excited to learn. That's why this unit is last - I know the least about it, and I need that time to learn. I'm planning on getting the Printrbot kit, and using Google Sketchup and Autodesk inventor to do the modeling, since our school system already has that software.



These are the things we decided would be the most useful. I've said before that you don't need expensive tools to make a Makerspace, and I stand by that statement. But good tools make making more accessible, and especially in a school setting, that's important. And tools cost money.
About $1,300 worth of money, not counting shipping or storage.

I'm looking at a couple different ways of doing money-earning.  For the more expensive kits, I've talked to my sponsor about using DonorsChoose. It seems like a great program, and I'd appreciate the help in offsetting the cost. However, with finals rapidly approaching, we haven't had the chance to talk to the school administration yet. So I've started with some simpler money-earning opportunities. Right now, I'm creating kits for making small light up ornaments to teach younger kids about the basics of circuitry. The kits would also be good for making a string of lights, good for teaching Parallel vs. Series. Plus, who doesn't love holiday themed illumination? Here's a picture of the prototype. I'll be posting a tutorial soon.



I'm selling the kits to local scout troops as an end of year craft project and my goal is to raise about $100 to start off with.

And finally, while I can't expect to rely on donations, I had the opportunity over Thanksgiving break to collect some of my great-grandfather's old tools for use in the Makerspace, which I cleaned up and labeled.



It wasn't anything too fancy - just screwdrivers, wrenches, a level, things that would be useful for building or disassembling small projects. But that toolbox has officially become the first thing in the Makerspace.



It's a long road ahead, but we have a plan. Let the making commence!

PS: One last thing. One of our main concerns with the technology club is the participation of girls. I was one of two girls out of about fifteen people at the clubs inception, a ratio that improved a little  the next year, I suspect because both of us were so active in the club. Now, she's actually come back to help with my project. But we still see the same problem. There were only two girls at the meeting and about twenty boys. Do any of you have suggestions for getting more girls involved?